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Automatic construction of lexicons,
taxonomies, ontologies, and other
knowledge structures
Olena Medelyan,1∗ Ian H. Witten,2 Anna Divoli1 and Jeen Broekstra3

Abstract, structured, representations of knowledge such as lexicons, taxonomies,
and ontologies have proven to be powerful resources not only for the system-
atization of knowledge in general, but to support practical technologies of doc-
ument organization, information retrieval, natural language understanding, and
question-answering systems. These resources are extremely time consuming for
people to create and maintain, yet demand for them is growing, particularly in
specialized areas ranging from legacy documents of large enterprises to rapidly
changing domains such as current affairs and celebrity news. Consequently, re-
searchers are investigating methods of creating such structures automatically
from document collections, calling on the proliferation of interlinked resources
already available on the web for background knowledge and general information
about the world. This review surveys what is possible, and also outlines current
research directions. C© 2013 Wiley Periodicals, Inc.Q1
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INTRODUCTIONQ2

S ince time immemorial, people have striven to sys-
tematically represent their understanding of the

world. With the advent of computers, abstract repre-
sentations of knowledge can be operationalized and
put to work. Encoding world knowledge in machine-
readable form opens up new applications and capa-
bilities. Statistically constructed dictionaries produce
rough but useful machine translations; both manually
and automatically constructed taxonomies generate
effective metadata for finding documents; assertions
are automatically acquired from the Web and assim-
ilated into ontologies that are so accurate that algo-
rithms can outperform people in answering complex
questions.
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Knowledge structures encode semantics in a
way that is appropriate for the task they are intended
to serve. They differ in coverage and depth, rang-
ing from purpose-built resources for particular docu-
ment collections, through domain-specific representa-
tions of varying depth, to extended efforts to capture
comprehensive world knowledge in fine detail. Tech-
niques for constructing lexicons, taxonomies, and on-
tologies automatically from documents and general
web resources allow custom knowledge structures to
be built for particular purposes. Advances in accu-
racy and coverage underpin solutions to increasingly
complex tasks. The world’s richly connected nature is
gradually becoming reflected in the World Wide Web
itself, linking disparate knowledge structures so that
they can benefit from each other’s capabilities. With
more knowledge, computers are getting smarter.

The automatic construction of knowledge struc-
tures draws on a range of disciplines, including
knowledge engineering, information architecture,
text mining, information retrieval, natural language
processing, information extraction, and machine
learning. This paper surveys the techniques that have
been developed. We begin by introducing some of
the key terms and concepts, an ontology of the
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FIGURE 1 Examples of semantic relations.

ontological domain—calling to mind the Ouroboros,
an ancient symbol depicting a serpent or dragon eat-
ing its own tail that finds echoes in M.C. Escher’s
recursively space-filling tessellations of lizards. Fol-
lowing that, we briefly survey existing taxonomies,
ontologies, and other knowledge structures before ex-
amining the various stages involved in mining mean-
ing from text: identification of terms, disambiguation
of referents, and extraction of relationships. We dis-
cuss various techniques that have been developed to
assist in the automatic inference of knowledge struc-
tures from text, and the use of pre-existing knowledge
sources to enrich the representation. We turn next to
the key question of evaluating the accuracy of the
knowledge structures that are produced, before iden-
tifying some trends in the research literature. Finally,
we draw some overall conclusions.

FROM WORDS TO KNOWLEDGE
REPRESENTATION
Ontology is commonly described as the study of the
nature of things, and an ontology is a means of orga-
nizing and conceptualizing a domain of interest. We
use the term ‘knowledge structure’ to embrace dictio-
naries and lexicons, taxonomies, and full-blown on-
tologies, in order of increasing power and depth. This
section introduces these concepts, along with some
supporting terms.

Semantics of Language and Knowledge
The overall goal of knowledge structures is to en-
code semantics. The smallest unit of language that

carries semantics is the morpheme. Morphemes may
be free or bound. The former are independent words
like school or home. The latter are attached to other
words to modify their meaning: -ing generates the
word schooling and -less the word homeless. In some
cases, two standalone words are joined into a new
word like homeschooling, or into multiword phrases,
also called compound words, like school bus or rest
home. Concepts typically represent classes of things,
entities, or ideas, whose individual members are called
instances. Terms are words or phrases that denote, or
name, concepts. Figure 1 shows concepts such as CAR

(with a further term adding the denotation automo-
bile), WHEEL and VEHICLE, as well as one instance,
ANNA’S FIRST CAR. In general, the relations between
semantic units such as morphemes, words, terms, and
concepts are called semantic relations.

If a term denotes more than one concept, which
happens when a word has homonyms or is polyse-
mous, the issue of ambiguity arises. Both homonymy
and polysemy concern the use of the same word to
express different meanings. In homonymy, the mean-
ings are distinct (bank as a financial institution or the
side of a river); in polysemy they are subsenses of the
word (bank as a financial institution and bank as a
building where such institution offers services). It is
the context in which a word is used that helps us
decode its intended meaning. For example, the word
house in the context of oligarchy or government is
likely to denote the concept Royal Dynasty.

It is often the case that more than one term can
denote a given concept. For example, both vocalist
and singer denote the concept Singer, or ‘a person who
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sings’. The semantic relation between these two terms
is called synonymy; it expresses equivalence of mean-
ing (e.g., automobile and car are equivalent terms that
both denote the concept Car in Figure 1). The oppo-
site relation is antonymy (hot and cold; Walking and
Driving in Figure 1).

Semantic units relate to each other hierarchi-
cally when the meaning of one is broader or narrower
than the meaning of the other. A specific type of hier-
archical relation occurs between two concepts when
one class of things subsumes the other. For exam-
ple, Singer subsumes Pop Singer and Opera Singer,
whereas Vehicle subsumes Car—in other words, Ve-
hicle is a hypernym of Car. Another type of hierarchi-
cal relation is one between a concept and an instance
of it, e.g., Alicia Keys is an instance of Pop Singer.
One concept can also be narrower than another be-
cause it denotes a particular part of it, e.g., Wheel is
a part of Car in Figure 1; in other words, a meronym.

There are also many nonhierarchical relations,
which can be grouped generically as ‘a concept is re-
lated to another concept’ (Singer has-related Band) or
characterized more specifically (Singer is-member-of
Band and Singer is-performing Songs).

Although the terminology outlined above is
standard in linguistics, publishers of knowledge
sources do not always use it consistently. For exam-
ple, the word term in the context of taxonomies is
typically used to mean Concept, and the word label
in a taxonomy, which occurs in phrases such as pre-
ferred and alternative labels to denote different kinds
of synonym, is used as the sense of Term as defined
in this section.

Types of Knowledge Structure
Knowledge structures differ markedly in their speci-
ficity and the expressiveness of the meaning they en-
code. Some capture only basic knowledge such as
the terms used in a particular domain, and their syn-
onyms. Others encode a great deal more information
about different concepts, the terms that denote them,
and relations between them. How much and what
kind of knowledge is needed depends on the tasks
these knowledge structures are intended to support.

In the Information Science community, an on-
tology is generally defined as a formal representation
of a shared conceptualization, and so any sufficiently
well-defined knowledge structure over which a con-
sensus exists can be seen as an ontology. In that light,
a taxonomy, whether a biological taxonomy of the
animal kingdom or a genre classification of books, is
an ontology that captures a strict hierarchy of classes
into which individuals can be uniquely classified.

In practice, those who create knowledge struc-

Q4

tures do not generally call them ontologies unless they
encode certain particular kinds of knowledge. For
example, ontologies normally differentiate between
concepts and their instances. In this survey, we dis-
tinguish the three categories of knowledge structure
shown in Table 1 according to the kind of informa-
tion that they encode: term lists, term hierarchies, and
semantic databases. In practice, these categories form
a loose spectrum: the distinctions are not hard and
fast.

Term lists include most dictionaries, vocabular-
ies, terminology lists, glossaries, and lexicons. They
represent collections of terms, and may include defi-
nitions and perhaps information about synonymy, but
they lack a clear internal structure. The various names
in the above list imply certain characteristics. For ex-
ample, ‘dictionary’ implies a comprehensive, ideally
exhaustive, list of words with all possible definitions
of each, whereas ‘glossary’ implies a (nonexhaustive)
list of words with a definition of each in a particular
domain, compiled for a particular purpose.

Term hierarchies specify generic semantic rela-
tions, typically has-broader or has-related, in addition
to synonymy. In this category, we include struc-
tures such as thesauri, controlled vocabularies, sub-
ject headings, term hierarchies, and data taxonomies.
The word ‘taxonomy’ implies a structure defined for
the purposes of classification in a particular domain
(originally organisms), whereas ‘thesaurus’ implies a
comprehensive, ideally exhaustive, listing of words in
groups that indicate synonyms and related concepts.
However, in many circumstances the names are used
interchangeably. According to standard definitions of
taxonomy and thesaurus, antonym (opposite mean-
ings) is not required information in either, nor is it
supported by common formats. However, it is in-
cluded in many traditional thesauri—notably Roget’s.
Subject headings are hierarchical structures that were
originally developed for organizing library assets;
their structure closely resembles taxonomies and the-
sauri. Most encyclopedias are best described as glos-
saries with immense depth and coverage. Wikipedia,
however, can be viewed as a taxonomy, because its
articles are grouped hierarchically into categories and
their definitions include hyperlinks to other articles
that indicate generic semantic relationships.

Semantic databases are the most extensive
knowledge structures: they encode domain-specific
knowledge, or general world knowledge, comprehen-
sively and in considerable depth. Besides differenti-
ating between concepts and their instances, a typ-
ical ontology falling into this category would also
encode specific semantic relations, facts and axioms.

Volume 00, xxxx 2013 3C© 2013 John Wi ley & Sons , Inc .



Author Proof
Overview wires.wiley.com/widm

TABLE 1 Three Categories of Knowledge Structures

Term Lists Term Hierarchies Semantic Databases

What knowledge structures belong here? Lexicons, glossaries,
dictionaries

Taxonomies, thesauri,
subject headings

Ontologies, knowledge
repositories

What are examples of such structures? Atis Telecom Glossary MeSH, LCSH, Agrovoc, IPSV,
and many more

CYC, GO, DBpedia YAGO,
BabelNet

How are semantic units represented?
As terms (with optional descriptions)

√ √

As concepts
√

Which semantic relations are represented?
Equivalence: synonymy and abbreviations

√ √ √

Antonym
√ √

Generic hierarchical relations (has-broader)
√

Generic associative relations (has-related)
√

Specific hierarchical relations
√

Hypernym/hyponym (is-a)
Concepts vs instance (is-instance-of)

Nonhierarchical relations
√

e.g., Meronymy (has-part)
Specific semantic relations

√

e.g., Is-located-in, works-at, acquired-by
What additional knowledge is represented?

Entailment: dog barks entails animal barks
√

Cause: killing causes dying
√

Common sense
√

What are the example use cases? Index of specialized
terms

Indexing content, exploratory
search, browsing

NLP and AI applications

What standards exist for these resources? – ANSI/NISO Z39.19,
ISO 25964

ISO 24707

What are typical encoding formats? GlossML (XML) SKOS (RDF) OWL, OBO

Many also encode semantic ‘common-sense’ knowl-
edge, such as disjointness of top-level concepts
(Artifact vs Living being—one cannot be both), at-
tributes of semantic relations like transitivity, and per-
haps even logical entailment and causality relations.
Although such structures were originally crafted man-
ually and therefore limited in coverage, several vast
knowledge repositories, many boasting millions of as-
sertions comprising mainly particular instances and
facts, have recently been automatically or semiauto-
matically harvested from the web.

The more subtle the knowledge to be encoded,
the more complex is the task of creating an appropri-
ate knowledge structure. The payback is the enhanced
expressiveness that can be achieved when working
with such structures, which increases with its com-
plexity. Figure 2 illustrates this relationship in terms
of the three categories shown in Table 1 and discussed
above.

Figure 2 shows some overlap between the
knowledge structures. Of course, this causes confu-
sion: one person might call something a taxonomy,

whereas another calls it an ontology. The fact is that
some knowledge structures are hard to categorize.
The popular lexical database WordNet1 is unusual in
that it describes not only nouns but also adjectives,
verbs, and adverbs. It organizes synonymous words
into groups (called ‘synsets’) and defines specific se-
mantic relations between them. Although WordNet
was not originally designed as an ontology, recent ver-
sions do distinguish between concepts and instances,
turning it into a fusion of a lexical knowledge base
and what its original creator has referred to as a
‘semiontology’.2 Freebase3 and DBpedia4 are knowl-
edge bases in which the vast majority of entries are in-
stances of concepts, defined using specific semantic re-
lations, including temporal and geographical relations
and other worldly facts. The Web contains a plethora
of domain-specific sources: GeoNames5 encodes hi-
erarchical and geographical information about cities,
regions, and countries; UniProt6 lists proteins and re-
lates them to scientific concepts such as biological
processes and molecular function; there are countless
others.
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FIGURE 2 The relation between complexity and expressiveness.

What knowledge structures include is deter-
mined by their purpose and intended usage. However,
knowledge collected with a particular goal in mind of-
ten ends up being redeployed for different purposes.
Sources originally intended for human consumption
are being re-purposed as knowledge bases for al-
gorithms that analyze human language. WordNet,
e.g., was created by psychologists to develop an ex-
planation of human language acquisition, but soon
became a popular lexical database for supporting nat-
ural language processing tasks such as word sense
disambiguation, with the ultimate goal of automated
language understanding and machine translation.
Similarly, Wikipedia,7 created by humans for humans
as the world’s largest and most comprehensive en-
cyclopedia, available in many different languages, is
being mined to support language processing and in-
formation retrieval tasks.

Origins, Standards, and Formats
Endeavors to automate the construction of knowledge
structures originate in information retrieval, compu-
tational linguistics, and artificial intelligence, which
all aspire to equip computers with human knowl-
edge. In information retrieval, knowledge is needed
to organize and provide access to the ever-growing
trove of digitized information; in computational lin-
guistics, it drives the understanding and generation
of human language; and in artificial intelligence, it
underpins efforts to make computers perform tasks
that one would normally assume to require human
expertise.

The key problems in information retrieval are
determining which terms that appear in a document’s
text should be stored in the index,8 and matching

terms in users’ queries to these terms.9 Modern termi-
nology extraction techniques still use basic text pro-
cessing such as stopword removal and statistical term
weighting, which originated in the early years.

Early computational linguistics research ex-
plored large machine-readable collections of text to
study linguistic phenomena such as semantic relations
and word senses,10 and also addressed key issues in
text understanding such as the acquisition of a linguis-
tic lexicon.11 In language generation, lexical knowl-
edge of collocations, i.e., multiword phrases that tend
to co-occur in the same context, is necessary to con-
struct cohesive and natural text.12 Many of the statis-
tical measures developed over the years for automat-
ically acquiring collocations from text13 are used for
extracting lists of terms worth including in a knowl-
edge structure.

Knowledge engineering, a subfield of artifi-
cial intelligence, addresses the question of how best
to encode human knowledge for access by expert
systems.14 Early expert systems15,16 were designed
with a clear separation between the knowledge base
and inference engine. The former was encoded as
rudimentary IF-THEN rules; the latter was an al-
gorithm that derived answers from that knowledge
base. As the technology matured, the difficulty of cap-
turing the required knowledge from a human expert
became apparent, and the focus of research shifted
to techniques, tools, and modeling approaches for
knowledge extraction and representation. Ontologies
became important tools for knowledge engineering:
they formulate the domain of discourse that a par-
ticular knowledge base covers. Put more concretely,
they nail down the terms that can be reasoned about
and define relations between them. Current ontology
representation languages emerged from early work on
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FIGURE 3 Simple knowledge organization system (SKOS) core vocabulary for the Agrovoc Thesaurus; each circle represents a concept.

frame languages and semantic nets, such as the KL-
One Knowledge Representation System.17 The notion
of Web-enabled ontologies is more recent. Early ef-
forts such as OntoBroker18 and, in particular, OIL19

and DAML-ONT,20 have culminated in the creation
of a standardized Web Ontology Language, OWL.21

The World Wide Web Consortium (W3C), an
international standards organization for the World
Wide Web, has endorsed many languages that are
used for encoding knowledge structures. Besides
OWL, another prominent representation language
is the simple knowledge organization system,22 or
SKOS, which is a popular way of encoding tax-
onomies, thesauri, classification schemes, and sub-
ject heading systems in RDF form. Figure 3 shows
the SKOS core vocabulary for an example from the
Agrovoc Thesaurus23 vocabulary. Other standards
organizations, such as ISO and ANSI, also promote
common standards for defining taxonomies and on-
tologies (see Table 1).

EXISTING TAXONOMIES,
ONTOLOGIES, AND OTHER
KNOWLEDGE STRUCTURES
There is plethora of knowledge structures, both gen-
eral and specific. Some have been painstakingly cre-
ated over the years by groups of experts; others
are automatically derived from information on the
Web, currently as research projects. The results are
freely available or can be obtained for a fee. In some
cases there are both free versions and full commercial
versions.

Table 2 lists some knowledge sources in vari-
ous fields, along with the size and year of the latest
version. Further examples can be found on the W3C
Semantic Web SKOS wiki,24 by searching the CKAN

Data Hub,25 or by browsing OBO Foundry26 and
Berkeley BOP.27

As web standards advance, such structures are
becoming increasingly interlinked, gradually expand-
ing the network of ‘linked open data’28 that drives the
adoption of the Semantic Web.29 Figure 4 shows how
the definition of Africa in the New York Times tax-
onomy is linked through the owl:sameAs predicate
to its definition in other sources, such as DBpedia,
Freebase, and GeoNames. As well as the enhanced
expressiveness that these supplementary definitions
bestow, the linkages allow further information to be
derived, such as alternative names for Africa in many
languages from the GeoNames database.

Historically, those who have created tax-
onomies and ontologies have not linked them to other
knowledge sources. Recently, efforts have been made
to rectify this. For instance, the 2012AB release of
the unified medical language system (UMLS)30 inte-
grates 11 million names in 21 languages for 2.8 mil-
lion concepts from 160 source vocabularies (e.g., GO,
OMIM, MeSH, MedDRA, RxNorm, and SNOMED
CT), as well as 12 million relations between concepts.
Because of the size and complexity of the biomedical
domain, rules have been established for integrating
inter-related concepts, terms, and relationships. This
process is not without errors; new releases appear bi-
annually.

In the area of linguistics, most data has been
published in proprietary closed formats. A gradual
shift is now taking place toward more open linked
data formats for representing linguistic data, as pro-
posed, e.g., by Chiarcos et al.31

THE STAGES IN MINING MEANING
Knowledge structures are often constructed to sup-
port particular tasks. The application dictates how

6 Volume 00, xxxx 2013C© 2013 John Wi ley & Sons , Inc .



Author Proof
WIREs Data Mining and Knowledge Discovery Automatic construction of knowledge structures

TABLE 2 Some Publicly Available Knowledge Structures

Name Field Built Size Year Source and Year of Latest Version

Term Hierarchies
LCSH General M 337,000 headings 2011 id.loc.gov
MeSH Biomedical M 26,850 headings 2013 ncbi.nlm.nih.gov/mesh
Agrovoc Agriculture M 40,000 concepts 2012 fao.org/agrovoc
IPSV General M 3,000 descriptors 2006 doc.esd.org.uk/IPSV
AOD Drugs M 17,600 concepts 2000 etoh.niaaa.nih.gov
NYT News M/A 10,4000 concepts 2009 data.nytimes.com
Snomed CT Healthcare M 331,000 terms 2012 ihtsdo.org/snomed-ct

Semantic Databases
WordNet General M 118,000 synsets 2006 wordnet.princeton.edu
GeoNames Geography M 10,000,000 2012 geonames.org
GO Bioscience M 76,000 2012 geneontology.org
PRO Bioscience M 35,000 2012 pir.georgetown.edu/pro
Cyc General M 500,000 concepts; 15,000 relations; 5,000,000 facts 2013 cyc.com
Freebase General M 23,000,000 2013 freebase.com
WikiNet General A 3,400,000 concepts; 36,300,000 relations 2010 h-its.org/english/research/nlp
DBpedia General A 3,770,000 concepts; 400,000,000 facts 2012 dbpedia.org
YAGO General A 10,000,000 concepts; 120,000,000 facts 2012 yago-knowledge.org
BabelNet General A 5,500,000 concepts; 51,000,000 relations 2013 lcl.uniroma1.it/babelnet

M stands for manual and A for automated creation.

expressive the representation should be, and what
level of analysis is needed. Buitelaar et al.32 present an
‘ontology learning layer cake’ which divides the pro-
cess of ontology learning into separate tasks in ever-
increasing complexity as one moves up the hierarchy,
with the end product of each task being a more com-
plex knowledge structure. Our own analysis loosely
follows this layered approach, reviewing what can be
achieved in a way that proceeds from simple to more
complex semantic analysis, corresponding roughly to
moving upwards and to the right in Figure 2.

FIGURE 4 Entry for ‘Africa’ in the New York Times taxonomy.

From Text to Terms
Identifying relevant terminology in a particular do-
main, possibly defined extensively by a given doc-
ument collection, is a preliminary step toward
constructing more expressive knowledge structures
such as taxonomies and ontologies.33 Riloff and
Shepherd34 argue that it is necessary to focus on a par-
ticular domain because it is hard to capture all specific
terminology and jargon in a single general knowledge
base. One approach to creating a lexicon for a do-
main like Weapons or Vehicles (their examples) is
to identify a few seed terms (e.g., bomb, jeep) and
iteratively add terms that co-occur in documents.34

Another is to use statistics, in a similar way to key-
word extraction, to identify a handful of the most
prominent terms in a document.35 The resulting lists
prove valuable for tasks like back-of-the-book index-
ing, where algorithms can potentially eliminate labor-
intensive work by professional indexers. Which terms
are worth including is subjective, of course, and even
experts disagree on what should be included in dic-
tionaries or back-of-the-book indexes. Hence, only
low accuracy can be achieved—around 50% for ter-
minology extraction36 and 30% for back-of-the-book
indexing.35

From Terms to Meaning
Once prominent terms in documents have been iden-
tified, the next step is to determine their meaning. By
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examining a term’s context, one can determine its se-
mantic category. Named entity recognition is a partic-
ular case, where proper nouns that correspond to cat-
egories such as People, Organizations, Locations, and
Events are determined.37 Other possible categories in-
clude prominent entity types in a given domain: drugs,
symptoms and organisms in biomedicine; police, sus-
pects, and judges in law enforcement. Semantic rela-
tions between terms and their categories derived in
this manner can be used to build new taxonomies or
expand existing ones.

Although semantic categories restrict what a
given term means, they do not pinpoint its pre-
cise denotation. John Smith is a Person, but there
are many John Smiths; Frankfurt Police may refer
to police stations in different cities. Meanings are
what encyclopedias, dictionaries, and taxonomies de-
fine, so one way of expressing a term’s denotation
is to link it to such a source using a unique iden-
tifier supplied by that source. For most terms, dis-
ambiguation based on context is necessary to deter-
mine the correct identifier and discard inappropriate
meanings.

A popular trend is to automatically link terms
in running text to articles in Wikipedia, a process
called Wikification or entity linking.38–40 Figure 5 il-
lustrates some of the issues involved in relating a short
fragment of text to Wikipedia: ambiguity (shown for

just four terms here); overlapping concept references;
selection of informative links [many potential links
have been omitted from the figure, to concepts such as
Six (number), Half (one half ), Have (property), The
(grammatical article)]. Such systems exploit the ex-
tensive definitions and rich hyperlinking exhibited by
Wikipedia articles and achieve around 90% accuracy
on Wikipedia articles and 70% on non-Wikipedia
text. The likely reason for lower accuracy on the
latter is that text often refers to entities that are
not included in Wikipedia—e.g., names of ordinary
people, rather than celebrities. Recent research has
specifically addressed the question of detecting such
entities.40

In biology, a common task is to identify gene
and protein names in text and link them to sources
such as Entrez Gene41 or Uniprot, a process called
gene normalization. The results from the BioCreative
II competition in 2008 show that individual systems
typically achieve an accuracy of 80%; however, com-
bining systems using a voting scheme can increase
performance to over 90%.42 DBpedia is another pop-
ular resource for annotating words in text with their
denotation, a task for which current techniques re-
port around 60% accuracy.43–45 DBpedia is part of
the linked data cloud, so results can be expressed as
RDF triples, making them easy to query and re-use in
other applications.

FIGURE 5 Relating a fragment of text to Wikipedia.
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From Terms to Hierarchies
Disambiguating terms in documents is the first step
in creating a custom taxonomy or ontology that un-
derpins the knowledge expressed in a particular doc-
ument collection. Many projects strive to organize
extracted terms automatically into hierarchical struc-
tures by determining pairs of terms where one has
broader meaning than the other.

It is possible that all hierarchical relations ex-
tracted in this manner constitute a single connected
structure, a taxonomy. More likely, the result is a
forest of disconnected smaller trees, referred to as
facets, faceted taxonomies, faceted metadata, or dy-
namic taxonomies.46,47 Such structures can facilitate
browsing a document collection by successively refin-
ing the focus of a search. For example, when seeking
blogs that review gadgets, one may choose to nar-
row an initial search by the type of gadget (e.g., mo-
bile phone), then by manufacturer (e.g., Apple), and
finally by model (e.g., iPhone 4s). In such applica-
tions, it is necessary to build an index that records
which terms appear in which documents. When cre-
ating facets, some broader terms are given preference
over others because they seem to be more informa-
tive when navigating search results. Ideally, the facets
that are displayed would depend on the query, e.g.,
a search for us movies would result in facets such as
actor, director, and genre.

Several techniques of linguistic analysis can
help identify hierarchical relations between words
and phrases: lexico-syntactic patterns, co-occurrence
analysis, distributional similarity computation, and
dependency parsing. These techniques are reviewed
in the next section. When extracting hierarchical re-
lations, the goal may be broader than simply to orga-
nize a document collection. Extracted taxonomies are
an intermediate step in constructing larger and more
expressive knowledge structures, or in enlarging ex-
isting ones.48,49

Evaluating hierarchies is a difficult task, and
quality can rarely be captured by a single metric. Some
researchers compare the hierarchy they produce to ex-
isting ones in terms of coverage48 or in terms of its
ability to support particular tasks.50 Others recruit
human judges to estimate the quality of a hierarchy,
either overall or in terms of particular relations.46,49

Relations and Facts Extraction
Other kinds of semantic relation can be extracted
from text, not just hierarchical ones. An extensive
body of research in information extraction and text
mining strives to automatically detect all the relations

listed in Table 1. The ultimate goal is to build a fully
comprehensive database of knowledge,51 preferably
one that can be improved upon iteratively. This is an
automatic analog of the long-standing Cyc project,52

which has manually assembled a comprehensive on-
tology and knowledge base of everyday common-
sense knowledge that also evolves over time. Use
cases range from answering questions to automati-
cally acquiring new knowledge—e.g., by inferring it
from causal relations.

Perhaps the ultimate test of a comprehensive
knowledge base is its ability to respond to questions
on a wide variety of topics. A striking example of
a comprehensive and successful question-answering
system is Watson,53 created by scientists at IBM,
which outperformed human contestants to win the
Jeopardy quiz show. It combines a variety of con-
tent analysis techniques that merge information ex-
tracted from the Web with knowledge that is already
encoded in resources such as WordNet, DBpedia, and
YAGO.54 Figure 6 illustrates the gradual improve-
ment in its performance from version to version: the
last version shown outperformed many people, shown
as dots in a ‘Winners Cloud’.55 Another standout
example is Wolfram Alpha,56 an impressive system
to which people can pose factual questions or cal-
culations. However, in this case the answers already
reside in various databases in structured form: the
challenge is not to extract facts from text but rather
to translate natural language questions into conven-
tional database queries.

In the biomedical domain, relations extracted
from diverse sources are mined to generate hypothe-
ses that stimulate the acquisition of new knowledge.
The field of literature-based discovery began in 1986
when a literature review of two disparate fields re-
vealed a connection between Raynaud’s syndrome
and fish oil, on the basis that the former presents
high blood viscosity and the latter is known to re-
duce blood viscosity.57 This established the Swanson
linking model. Following this seminal work, several
groups have worked on automated approaches for
literature-based discovery,58,59 which has now spread
beyond the biomedical field into applications such as
water purification.60

Many groups have extracted relationships from
biomedical documents, including protein–protein61

interactions and interactions both between drugs62

and between genes and drugs.63 Recently, with the
rise of ‘big data’ and systems biology approaches, bi-
ologists are building vast networks of genes, proteins,
and often other entities (chemicals, metabolites). This
enables them to investigate biological processes at
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FIGURE 6 Improvement in Watson’s performance (the dot cloud shows people’s performance).

the level of functional modules rather than individ-
ual proteins.64

AUTOMATIC CONSTRUCTION OF
KNOWLEDGE STRUCTURES
Approaches to automatically constructing knowledge
structures can be grouped by the categories in Table 1.
Here, we summarize the techniques used in research
projects over the past two decades.

Glossaries, Lexicons, and Other Term Lists
Automatic identification of words and phrases that
are worth including in a glossary, lexicon, back-of-
the-book index, or simply a list of domain-specific
terminology, is a first step in constructing more com-
prehensive knowledge structures. Here, three main
questions of interest are:

1. Which phrases appearing in text might rep-
resent terms?

2. When does a phrase become a term?
3. How can a term’s meaning in a given context

be determined, and synonymous phrases be
found?

When detecting terms in text, attention can be
restricted to certain words and phrases, excluding
others from further consideration. For example, one
might ignore phrases such as list of, including or
phrases that are worth, and focus only on phrases
that could denote terms, e.g., automatic identification,

glossary, and knowledge structures. An n-gram is a se-
quence of n consecutive words, where n ranges from
1 up to a specified maximum. Simply extracting all
n-grams and discarding ones that begin or end with a
stopword yields all valid terms but includes numerous
extraneous phrases. Alternatively, one can determine
the syntactic role of each word using a part-of-speech
tagger and then either seek sequences that match a
predetermined set of tag patterns, or identify noun
phrases using shallow parsing. This yields a greater
proportion of valid terms, but inevitably misses some.
Figure 7 compares two sets of candidate phrases, one
identified using the n-gram extraction approach; the
other using shallow parsing. Some systems employ
named entity recognition tools to identify notewor-
thy names. A comprehensive comparison of various
methods for detecting candidate terms concluded that

NEJM usually has the highest impact factor
of the journals of clinical medicine.

N-grams:
NEJM
Highest
Highest impact factor
Impact
Impact factor
Journals
Journals of clinical
Clinical
Clinical medicine
Medicine

Noun Phrases:
NEJM
Highest impact factor
Journals
Clinical medicine

FIGURE 7 n-Grams versus noun phrases.
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a combination of n-grams and named entities works
best.35

Having gathered candidate phrases from the
text, the next task is to determine whether or not
each one is a valid term. Current methods are sta-
tistically driven, and can be divided into two cate-
gories. The first ranks candidates using criteria such
as the t-test, C-value, mutual information, log like-
lihood, or entropy. There are two slightly differ-
ent classes of measure: lexical cohesion (sometimes
called ‘unithood’ or ‘phraseness’), which quantifies
the expectation of co-occurrence of words in a phrase
(e.g., back-of-the-book index is significantly more co-
hesive than term name); and semantic informative-
ness (sometimes called ‘termhood’), which highlights
phrases that are representative of a given document
or domain. Occurrence counts in a generic corpus
are often used as a reference when computing such
measures. Some researchers evaluate different ranking
methods and select one that best suits their task;36,65

others combine unithood and termhood measures us-
ing a weighted sum35 or create a new metric that
combines both.66

The second way of identifying terms uses boot-
strapping. First, seed terms for a given semantic cat-
egory, e.g., Vehicles or Drugs, are determined, ei-
ther manually or automatically. Further terms are
identified by computing their co-occurrence proba-
bility with the seed terms, and the process is re-
peated iteratively. The idea was proposed by Riloff
and Shepherd34 and has been refined and extended
by others over the years.67–69 This second approach is
more semantically focused than the first, being seeded
with terms that denote specific semantic categories—
whereas the first approach seeks any terms that are
generally salient. In one method, seed terms are de-
termined randomly from the pool of content words,
which are words that occur within certain frequency
thresholds, and clustered into semantic categories us-
ing pattern analysis.70

Once terms have been identified, their variants,
paraphrases, and synonyms must be grouped under
the same entry. Bourigault and Jacquemin71 use ex-
tended part-of-speech patterns to determine syntactic
variants like cylindrical bronchial cell and cylindrical
cell, or surface coating and coating of surface. Park
et al.66 divide such variants into five types that can
be detected automatically by linguistic normalization
tools: (1) symbolic (audio/visual input and audio-
visual input); (2) compounding (passenger airbag
and passenger air bag); (3) inflectional (rewinds and
rewinding); (4) misspelling (accelarator and acceler-
ator); and (5) abbreviations. Csomai and Mihalcea35

determine whether two terms are lexical or syntactic

FIGURE 8 Example of paraphrase identification.

paraphrases by checking for nonempty intersection
between a set of labels for each term that comprises
the stem and WordNet synonyms of every nonstop-
word it contains; Figure 8 shows an example for the
terms employing the pendulum and pendulum ap-
plied. It would be interesting to study which types
of variant are most common in practice, and devise
schemes that account for all types.

Taxonomies, Thesauri, and Other
Hierarchies
Some work on extracting terminology from text takes
account of basic broader/narrower relations between
terms. For example, when Riloff and Shepherd34

bootstrap term extraction for the category Vehicles,
a two-level taxonomy with a single root and many
leaves is formed. Subsequent extraction of terms for
related categories (e.g., Vehicle parts) could add other
branches, and so on, iteratively.

The research surveyed below focuses on gener-
ating taxonomies rather than lists of terms, the goal
being either to deduce a multilevel hierarchical struc-
ture for use when browsing documents and suggesting
search refinements, or as an intermediate step when
constructing more complex structures. We identify
two strands of work: creating taxonomies from plain
text and carving hierarchies from existing knowledge
structures.

Taxonomic relations can be derived from text
using a pattern-based approach. In seminal early
work, Hearst72 mined Grolier’s encyclopedia using
a handful of carefully chosen lexico-syntactic pat-
terns, shown in Table 3. According to human judges,
52% of the relations extracted were ‘pretty good’—
but the technique was only 28% accurate on a dif-
ferent corpus (Lord of the Rings). Many researchers
have extended this work. For example, Cederberg
and Widdows73 use Latent Semantic Analysis to
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TABLE 3 Lexico-Syntactic Patterns for Extracting Relations from TextQ5

Pattern Matching Text Extracted Relation

NP0 such as {NP1, NP2 . . . , (and|or)} NPn . . . found in fruit, such as apple, pear,
or peach, . . .

Apple is-a fruit; pear is-a fruit; peach
is-a fruit

such NP as {NP,}* {(or|and)} NP . . . works by such authors as Herrick,
Goldsmith, and Shakespeare . . .

Herrick is-a author; Goldsmith is-a
author; Shakespear is-a author

NP {, NP}* {,} or other NP . . . bruises, wounds, broken bones, or
other injuries . . .

Bruise is-a injury; wound is-a injury;
broken bone is-a injury

NP {, NP}* {,} and other NP . . . temples, treasuries, and other civic
buildings . . .

Temple is-a civic building; treasury is-a
civic building

NP {,} including {NP,}* {or|and} NP . . . countries, including Canada and
England . . .

Canada is-a country; England is-a
country

NP {,} especially {NP,}* {or|and} NP . . . most European countries, especially
France, England, and Spain . . .

France is-a European country; England
is-a European country; Spain is-a
European country

compute the similarity between hyponym pairs, re-
ducing the error rate by 30% by filtering out dissim-
ilar and therefore incorrect pairs. They observed that
Hearst’s patterns that indicate hyponymy may also
have other purposes. For example, X including Y may
indicate hyponymy (e.g., illnesses including eye infec-
tions) or membership (e.g., families including young
children) depending on the context. They also noticed
that anaphora can block the extraction of broader
terms that appear in a preceding sentence (e.g., ‘A kit
such as X, Y, Z will be a good starting kit’, where the
previous sentence mentions beer-brewing kit). Snow
et al.74 replaced Hearst’s manually defined patterns by
automatically extracted ones, which they generalized.
The input text was processed by a dependency parser,
and dependency paths were extracted from the parse
tree as potential patterns, the best of which were se-
lected using a training set of known hypernyms. These
patterns were reported to be more than twice as ef-
fective at identifying unseen hypernym pairs as those
defined by Hearst. Interestingly, this technique can
supply quantitative evidence for manually crafted pat-
terns: e.g., it shows that X such as Y is a significantly
more powerful pattern than X and other Y. Cimiano
et al.75 also use lexical knowledge, but instead of
searching for patterns they apply dependency parsing
to identify attributes. For example, hotel, apartment,
excursion, car, and bike all have a common attribute
bookable, whereas car and bike are drivable. A ‘for-
mal concept analysis’ technique is then used to group
these terms into a taxonomy based on these attributes.

Other approaches use statistics rather than pat-
terns to identify hierarchies in text. Pereira et al.76

perform a distributional analysis of the words that
appear in the context of a given noun, and group
them recursively using a clustering technique. Clus-

ter labels are determined from a centroid analysis.
Inspired by the cosine similarity metric in informa-
tion retrieval, Caraballo77 created vectors from words
that co-occur within appositives and conjunctions
of a given pair of nouns in parsed text. They built
a taxonomy bottom-up by connecting each pair of
most similar nouns with place-holder parent node and
then labeling these place-holder nodes with potential
hypernyms derived using Hearst’s patterns. The la-
bels can be sequences of possible hypernyms, e.g.,
firm/investor/analyst. The final step is to compress
the tree into a taxonomy. Sanderson and Croft78 use
subsumption to group terms into a hierarchy. If one
term always appears in the same document as an-
other, and also appears in other documents, they as-
sume that the first term subsumes the second, i.e., it
is more generic. About 72% of terms identified in
this way were genuine hierarchical relations. Yang
and Callan79 compare various metrics for taxonomy
induction by implementing patterns, co-occurrences,
contextual, syntactic, and other features commonly
used to construct a taxonomy, and evaluating their
effectiveness on WordNet and Open Directory trees.
They conclude that simple co-occurrence statistics are
as effective as lexico-syntactic patterns for determin-
ing taxonomic relations, and that contextual and syn-
tactic features work well for sibling relationships but
less so for is-a and part-of relations.

When text becomes insufficient, researchers turn
to search engines. Velardi et al.80 focus on lexical pat-
terns that indicate a definition (X is a Y), but as well
as matching sentences in the original corpus they also
collect definitions from the Goole query define: X and
online glossaries. Kozareva and Hovy81 suggest con-
structing search queries using such lexico-syntactic
patterns and then analyzing web search engine results
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to find broader term for a given term. A similar ap-
proach is also used in the extractor module of Etzioni
et al.’s51 ontology KnowItAll (see next section).

Creating Hierarchies Using Relations
in Existing Sources
An alternative approach is to use existing knowl-
edge resources such as WordNet or Wikipedia to
drive the extraction of a taxonomy, with or with-
out a document collection in mind. Goals range from
adding new concepts and relations to existing struc-
tures to inducing custom hierarchies from large and
comprehensive resources. Please note that in this
case, the resulting hierarchy contains concepts rather
than terms, because the original sources encode these
concepts.

Vossen82 describes how WordNet can be aug-
mented with technical terms. In a corpus of techni-
cal writing, he identified noun phrases whose head
noun (or noun phrase) matches an existing Word-
Net entry, and grouped them by common ending. For
example, he extended Technology to Printing tech-
nology, and again to Inkjet printing technology. He
showed that parts of WordNet can be trimmed be-
fore this extension to reduce ambiguity, and recom-
mended trimming the upper WordNet classes too.
Snow et al.48 also extended WordNet, but without
focusing on any particular domain. Using their ear-
lier method,74 they harvested many hypernym pairs
missing from WordNet, and proposed a probabilis-
tic technique that added 10,000 such pairs with an
accuracy of 84%.

Stoica et al.46 induce a taxonomy from Word-
Net, focusing on terms mentioned in a given doc-
ument collection—they used a set of recipes—to
support faceted query refinement. They reduced
WordNet’s hierarchy to a specialized structure in-
tended to support this particular document collec-
tion, as illustrated in Figure 9, and their experimen-

tal subjects judged it to be significantly more useful
than trees generated by Sanderson and Croft’s78 sub-
sumption technique. In the domain of news, Dakka
and Ipeirotis47 noticed that typical facet categories
rarely appear in news articles. They used a named en-
tity extraction algorithm in conjunction with Word-
Net and Wikipedia as a source of terms, which they
extended with frequently co-occurring context terms
from other resources. They then identified context
terms that are particularly common in the news, and
constructed a final taxonomy using the subsumption
technique.78 Medelyan et al.83 also describe a method
for creating taxonomies for specific document col-
lections. They suggest carving a focused new taxon-
omy from as many sources as possible: Wikipedia,
DBpedia, Freebase, and any number of existing tax-
onomies in the domain of interest. Heuristics that take
account of term occurrences across different docu-
ments help select relevant hierarchical relations from
the many that are available.

Others extract generic or custom taxonomies
from Wikipedia. Observing that its category net-
work includes relations of many types, from strong
is-a (Capitals in Asia and Capitals) to weak associa-
tions (Philosophy and Beliefs), Strube and Ponzetto50

induced a taxonomy by automatically categorizing
them into is-a and not-is-a. They achieved 88% accu-
racy by combining pattern-based methods with cate-
gory name analysis.

Ponzetto and Navigli84 noticed that Wikipedia’s
category structure copes particularly badly with gen-
eral concepts. For example, Countries is categorized
under Places, which is in turn categorized under
Nature: this makes subsumption nontransitive. As a
solution they propose to merge the top levels of Word-
Net with the lower levels of the Wikipedia category
structure. The next section describes other attempts to
merge various sources into new and complex knowl-
edge structures.

FIGURE 9 (a) Merging, (b) compressing, and (c) pruning upper levels of WordNet’s hypernym paths into a facet hierarchy.Q6
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A detailed overview of approaches to generat-
ing knowledge structures from collaboratively-built
semistructured sources like Wikipedia is provided by
Hovy et al.85 They argue that Wikipedia is particu-
larly suited to this task, not only because of its size
and coverage, but also because it is current and covers
many languages. They also briefly mention research
on inducing ontologies from Wikipedia, which we
cover in the next section.

Ontologies, Knowledge Repositories,
and Other Semantic Databases
Constructing ontologies is a massive, labor-intensive,
and expensive undertaking. Since the early 1990s,
various supporting methodologies have been de-
vised. For example, CommonKADS,86 the Euro-
pean de facto standard for knowledge analysis and
knowledge-intensive system development, covers all
aspects of ontology development, management, and
support, and many major companies in Europe, the
United States and Japan have either adopted it in
its entirety or partly incorporated it into existing
methods. However, though methods such as Com-
monKADS are very powerful and often come with
tool support to assist the ontology engineer, they are,
in essence, manual technologies: they still require a
knowledge engineer to put in significant amounts of
work to shape the ontology.

Consequently, many researchers have turned to
automating these processes. Some have developed a
variety of methods that combine machine learning
tools, NLP techniques, and structured knowledge en-
gineering to construct ontologies from text or other
sources. Others focus on building tools and work-
flows in a multidisciplinary approach to ontology cre-
ation. There are also initial attempts to learn deep
ontological knowledge, such as disjointness between
concepts.

Mining Ontologies from Text
Imagine an algorithm that can read large amounts of
text and construct an ontology from the information
therein, just as people read books to acquire knowl-
edge. It would have to first identify concepts of in-
terest and then learn facts and relations connecting
them.

Lee et al.87 describe a bottom-up approach for
learning an ontology from unstructured text. They
identify concepts by detecting terms of interest and
clustering them based on similarity. Next they use the
notion of episodes to cluster co-occurring concepts
into meaningful events, which they use as a basis for
deeper relation extraction. Their approach addresses

some unique challenges posed by Chinese language
processing.

Poon and Domingos88 identify concepts and the
relations between them in a unified approach. They
use a semantic dependency parser to analyze the sen-
tences and then build a probabilistic ontology (rather
than a deterministic one) from logical forms of sen-
tences obtained from this parser.

Others extract facts from the Web, although the
resulting structures are not necessarily called ontolo-
gies: they operate at term rather than at concept level.
The University of Washington’s KnowItAll,51 Carlson
et al.’s never ending language learning (NELL)
project,89 and Pasca,90 all utilize masses of un-
structured text crawled from the Web to boot-
strap the extraction of millions of facts, and report
ever-improving quality. KnowItAll extends Hearst’s
work72 by connecting individual lexico-syntactic pat-
terns to classes. For example, NP1 plays for NP2 is
a pattern for collecting facts such as instances of the
classes Athlete and SPORTSTEAM, as well as which
athletes play for which teams. A probabilistic en-
gine filters the extracted facts based on co-occurrence
statistics derived by querying the web. KnowItAll was
soon succeeded by TextRunner91 and ReVerb.92 Text
Runner implemented a domain-independent ap-
proach to fact extraction by removing the need to
specify patterns manually, instead deriving them au-
tomatically from parse trees. ReVerb extracted more
accurate relations by identifying verbs and their clos-
est noun phrases in a sentence as candidate facts,
and then using a supervised approach for validat-
ing these facts. An interesting aspect of NELL is
that it runs continuously, and attempts to improve
its extraction capabilities every day by learning from
what has been extracted previously. It exploits redun-
dancy that comes from different views of the data,
and implements a coupled learning technique that si-
multaneously learns several facts, connected via their
arguments.

Constructing Ontologies from
Other Sources
As well as text, pre-existing structured sources have
been exploited for automatically constructing on-
tologies. New ontologies can be created by refining
the relations defined in an existing source, extending
its coverage, or merging multiple sources into one.
The most popular sources are Wikipedia93–95 and
WordNet,82,96,97 although some researchers have also
explored the use of glossaries,98 existing taxonomies
and ontologies,49 and other linguistic resources.99
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Two automatically constructed knowledge
structures, DBpedia93 and YAGO,96 extract concepts
and facts from structured and semistructured parts of
Wikipedia. The former focuses on Wikipedia’s cate-
gory structure, infoboxes, images, and links. It repre-
sents each category as a class, and uses the key-value
pairs available in infoboxes as the basis for proper-
ties and relations between objects. Because its focus is
on a close mapping between the live Wikipedia and a
structured representation of that data, it makes little
effort to clean up the structure. The latter is some-
what similar—it also uses the structured content of
Wikipedia to construct an ontology—but combines
this with information extracted from WordNet, using
several heuristics to come up with a higher-quality on-
tological structure. In contrast to DBpedia, it focuses
less on accurately reflecting the contents of Wikipedia,
and more on synthesizing a high-quality ontological
structure that stands on its own. Recently, a new
version of YAGO has been released,100 which also
accounts for temporal and spatial information asso-
ciated with entities. This system is able to support
a system that answers questions such as ‘Give me
all songs that Leonard Cohen wrote after Suzanne’
or ‘Name navigable Afghan rivers whose length is
greater than one thousand kilometers’.

Nastase and Strube94 use Wikipedia as a source
of semantic relations to extend Strube and Ponzetto’s
work on taxonomy induction by analyzing category
names as well as the category structure. Category
names often contain references to other Wikipedia
articles, and thousands of specific relations can be
extracted using carefully crafted patterns—e.g., from
the category MOVIES DIRECTED BY WOODY ALLEN

one can infer that ANNIE HALL is a MOVIE and ‘IS
DIRECTED BY’ ‘WOODY ALLEN’. Finally, they also har-
vest associative relations between concepts that are
linked in the same sentence of a Wikipedia article
description.

Another strand of work is to extend existing
structures with ontological relations. Ruiz-Casado101

mined Wikipedia for new relations to add to Word-
Net by creating mappings between WordNet synsets
and Wikipedia articles, identifying patterns that ap-
pear between Wikipedia articles that are related ac-
cording to WordNet, and using those patterns to
find new relations of different types. Sarjant et al.49

mine Wikipedia for new concepts to add to the Cyc
ontology.52 They argue that Wikipedia’s extensive
coverage of named entities and domain-specific ter-
minology complements the general knowledge that
Cyc contains. Having created mappings between a
Cyc concept and a Wikipedia article, they identify
other children of that article’s category and filter out

nonisa relations by checking the article’s first sentence
and infobox. They added 35,000 specific concepts to
Cyc, such as various dog races and the names of well-
known personages.

Another interesting application is to multilin-
gual ontology construction. de Melo and Weikum102

note the value of Wikipedia’s interwiki links as a
source of cross-lingual information. Unfortunately
many of them are incorrect, so they apply graph re-
pair operations to remove incorrect edges based on
several criteria. This work led to MENTA,103 a multi-
lingual ontology of entities and their classes built from
WordNet and Wikipedia that covers more than 200
different languages. MENTA uses a set of heuristics
for linking connected Wikipedia articles, categories,
infoboxes, and WordNet synsets from multiple lan-
guages. The resulting weighted links between entities
are aggregated in a Markov chain, in a similar man-
ner to the PageRank algorithm. BabelNet97 is a mul-
tilingual lexicalized semantic network and ontology
that covers six European languages (Catalan, French,
German, English, Italian, and Spanish) and contains
5.5 million concepts and 26 million word senses. Like
MENTA, it was created by integrating Wikipedia
with WordNet. Instead of analyzing and correcting
existing translation links between different Wikipedia
versions, they performed automatic mapping by fill-
ing in lexical gaps in resource-poor languages with the
aid of statistical machine translation. The resulting se-
mantic network includes 365,000 relation edges from
WordNet and 70 million edges of underspecified re-
latedness from Wikipedia. Like WordNet, BabelNet
groups words in different languages into synsets, each
containing on average 8.6 synonyms.

Workflows and Frameworks
for Building Ontologies
Recently, focus has shifted to a multidisciplinary ap-
proach to building tools and workflows for ontology
creation. Given the unstructured nature of many in-
formation sources, particularly the Web, a combina-
tion of machine learning tools, NLP techniques, and
structured knowledge engineering seems a promis-
ing way to support quicker and easier creation of
ontologies.

Maedche and Staab104 introduce a semiauto-
matic learning approach that combines technologies
from classical knowledge engineering, machine learn-
ing and NLP into a workflow and toolset that help
knowledge engineers to quickly integrate and reuse
existing knowledge to build a new ontology. The
method encompasses ontology import, extraction,
pruning, refining, and evaluation.
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FIGURE 10 Ontology building workflow in rapid ontology construction (ROC).

TextToOnto105 is an ontology framework
that integrates existing NLP tools like Gate, and
implements additional learning algorithms for con-
cept relevance and instance-to-concept assignment.
All assertions generated are expressed in an interme-
diate model, which can be visualized or exported into
an ontological language of choice.

Koenderink et al.106 describe rapid ontology
construction (ROC), a methodology that distin-
guishes different stakeholders in the ontology creation
process and identifies a workflow for ontology con-
struction based on them. Figure 10 shows an example.
ROC includes tools that help automate various steps
of the construction process, including selecting likely
sources for relevant concepts and using them later to
suggest further concepts and relations that should be
added.

Gurevych et al.99 model lexical–semantic infor-
mation that exists in many different knowledge struc-
tures. Their solution unifies all this information into
a single standardized model, which also takes into
account multilinguality.

Beyond Light-Weight Ontologies
One must note that the result of an automated solu-
tion is not always a fully fledged ontology according
to the definition in Table 1. Often, so-called ‘light-
weight ontologies’ are constructed that detect classes,
instances (or simply concepts), specific semantic rela-
tions, and facts. Few approaches are known for au-
tomatically detecting common sense knowledge such
as disjointness, to be added into a taxonomy. An ex-
ception is the work by Völker et al.107 who learn
disjointness from various sources. For example, one
of the assumptions made is that if two labels are fre-

quently used for the same item, they are likely to be
disjoint, because people tend to avoid redundant la-
beling. They found that judging disjointness is dif-
ficult even for experts, but a supervised system can
achieve competitive results.

EVALUATING REPRESENTATIONAL
ACCURACY
Evaluating knowledge structures is a crucial step in
their creation, and several iterations of refinement
are usually needed before finalizing the content and
structure. How to evaluate the knowledge structures
themselves is still a matter of debate.108,109 Possible
approaches are to compare them with other struc-
tures, assess internal consistency, evaluate task based
performance, or judge whether they are accurate rep-
resentations of reality.110,111

Most commonly, knowledge structures are eval-
uated in terms of the accuracy of detected concepts,
instances, relations, and facts. One begins by compar-
ing automatically determined structures with existing
manually produced resources, or by having human
judges assess the quality of each item. Then accu-
racy values are computed using the standard statis-
tical measures used in information retrieval: Preci-
sion, Recall, and F-measure. Throughout this paper
we quote F-measure values reported by authors as the
‘accuracy’ of their approach, because these reflect in
a single number both aspects of performance, namely
how many of the automatically identified items are
correct, and how many of the correct items are found.

Another popular way of evaluating knowledge
structures is through task-based performance, which
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FIGURE 11 Example of logical inconsistency in an ontology.

tests their usability for particular tasks. This includes
ease of use, time taken, expertise required, and re-
sults achieved. For example, Dakka and Ipeirotis48

designed a study in which users are asked to locate
a news item of interest using automatically generated
facet hierarchies. The authors report user satisfaction
after using the hierarchy, and observations on their
interaction with the system. Strube and Ponzetto50

adopt the task of computing semantic similarity and
compare the accuracy of standard metrics, whether
they were relying on WordNet or their automatically
generated WikiRelate taxonomy.

Internal consistency is particularly important in
ontology learning. For example, logical consistency
validates whether an ontology contains contradictory
information. Figure 11 shows how adding a new as-
sertion into an ontology (ANNA’S CAT is instance of
BIPED) results in an inconsistency, because BIPEDS

(walks on two legs) and QUADRUPED (walks on four
legs) are disjoint.107 Consistency can be assessed using
a variety of metrics, such as clarity, coherence, com-
petency, consistency, completeness, conciseness, ex-
pandability, extendibility, minimal ontological com-
mitment, minimal encoding bias, and sensitiveness.

Other, less application-oriented, metrics, have
been discussed in the literature. For example, when
comparing knowledge structures one could analyze
structural resemblance. Structure can be compared by
measuring the distance between two concepts, repre-
sented as nodes in the ontology graph structure, based
on shortest path (parsimony), common ancestors, and
offsprings, and the degree of branching. For example,
Maynard et al.112 argue that the longer a particular
taxonomic path from root to leaf, the more difficult
it is to achieve annotation consistency, e.g., indexing
consistency. Metrics have also been devised for mea-
suring the breadth and depth of ontologies for the
purpose of comparing them with one another within
a specific discourse or domain.

Representation of reality (in practice, a subset
of reality defined by a particular domain or document
collection) is another possible evaluation parameter.
It can be judged by measuring the usage frequency
of real-world concepts, the alignment of concepts to
real-world entities, or by comparing the rate of change
in the knowledge structure with that of the real world
in terms of the number of concepts added, deleted, or
edited.113 Such evaluation is subjective and can only
be accomplished by domain experts.

RESEARCH TRENDS
Proceeding from simple to more comprehensive
knowledge structures, here are some salient trends.
For term lists, no single method for term detection
stands out, and studies comparing the results of dif-
ferent methods conclude that the best choice depends
on the overall task goal.13,36 Early approaches that
use hand selected seed terms are being superseded by
ones that adopt machine learning techniques to deter-
mine an appropriate set of seed terms. For inferring
hierarchies from text, researchers still apply patterns
to text, but have abandoned manually selected pat-
terns in favor of ones derived automatically via meth-
ods such as dependency parsing. This, in conjunction
with learning the most effective patterns from data,
has doubled accuracy compared with manual selec-
tion. Surprisingly, statistical co-occurrence has been
found to be just as effective as pattern-based meth-
ods (Yang and Callan79). When inferring hierarchies
from other sources, there is a clear trend toward com-
bining the best of both worlds: e.g., deriving upper
levels from WordNet or Cyc and lower levels from
Wikipedia and Linked Data sources. Moreover, the
focus of research seems to be shifting from generic
taxonomies toward the creation of custom structures
suitable for browsing specific collections.

Several trends specific to ontologies can be dis-
cerned. Whether learning from text or from the web,
the challenge is to devise effective pattern extrac-
tion methods. More refined methods are suggested
each year. When extracting ontologies from existing
sources, bigger seems to be regarded as better. In con-
trast to the taxonomy research mentioned above, on-
tological sources compete in terms of size and number
of facts extracted. One trend is to combine as much
information as possible without losing anything (e.g.,
WordNet senses, facts, hierarchies, links to original
sources, Linked Data). Another is to exploit mul-
tilingual information sources and link them into a
single huge source (e.g., multilingual WordNet and
Wikipedia).
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FIGURE 12 Interest in DBpedia, Freebase, and WordNet.

Overall, there is a strong trend toward data-
driven techniques that use machine learning to
derive the optimal parameters, settings, seed words,
patterns, etc. The invention of new technologies in
machine learning spurs further advances in mining
text and other sources for knowledge, which in turn
give new insights into the use of human language.
Dependency parsing is applied in many different con-
texts, such as deriving patterns automatically from
text, learning common attributes that create hierar-
chies, and ontology learning. At a practical level there
is great interest in formats, frameworks, and APIs
that help people work with data, share it with oth-
ers, support connectivity between sources, and enable
it to be easily extendable with new components and
knowledge. In practice, researchers tend to re-purpose
manually created structures and augment them into
larger, more expressive or more specialized resources.
Many successful systems combine several sources into
one.

Open problems at today’s research frontier in-
volve sophisticated ontologies that can work with
spatial, temporal, and common sense knowledge. Re-
searchers seem to be leaving behind the inference of
entities, facts, simple concepts, and so on, perhaps
because these problems are essentially already solved.
Instead they are turning attention to the creation of
systems (like NELL) that constantly mine the web and
continually improve their ability to learn and acquire
facts and other knowledge. The robustness of such
systems and their sustainability over time are likely to
present considerable challenges.

When new, comprehensive sources emerge, re-
searchers gradually abandon others. Figure 12 il-
lustrates how Wikipedia and Freebase have steadily
approached and overtaken WordNet as the subject
of web searches in the technical field. Another in-
teresting trend can be observed by comparing the
number of papers published over time on topics re-
lated to the construction of lexicons, taxonomies and

FIGURE 13 (a) Overall and (b) relative numbers of research publications in recent years.

18 Volume 00, xxxx 2013C© 2013 John Wi ley & Sons , Inc .



Author Proof
WIREs Data Mining and Knowledge Discovery Automatic construction of knowledge structures

ontologies. Figure 13 shows counts from Google
Scholar of publications mentioning ‘lexicon learning’,
‘lexicon induction’, ‘lexicon construction’, ‘extract-
ing taxonomy’, or ‘automatically created taxonomy’,
and corresponding results when lexicon is replaced by
taxonomy and ontology, plotted in 5-year intervals
from before 1980 to the present day. Automatic con-
struction of ontologies has become significantly more
popular, with thousands of publications rather than
hundreds. Figure 13(b) compares the relative growth
of the three fields, and shows how interest in the
construction of lexicons, popular in the 90s, has de-
cayed since 2000 in favor of taxonomy and ontology
construction.

CONCLUSION
Over the past decades, researchers have sought the
holy grail of a perfect knowledge structure, whether
built manually or in some automated fashion. Such
a structure would encompass linguistic knowledge of
words, phrases, concepts, and their relations; com-
mon sense knowledge about how these concepts in-
teract; and factual knowledge that transcends that of
the most erudite scholar—although the boundaries
between these different types are blurry. Both the
complexity and expressiveness of a knowledge struc-
ture increase with the amount, variety, and depth of
the knowledge it encodes.

Efforts to mine knowledge from text and other
sources originated in various fields: information re-
trieval, as people began to understand the importance
of managing digitized data; computational linguis-
tics, as algorithms began to unlock the computer’s
ability to understand human language; and artificial
intelligence, as early expert systems were created to
emulate human performance. As time passed, knowl-
edge engineering matured and resulted in new stan-
dards and encoding languages, which gradually be-
came widely deployed. Today there are thousands
of commercially and publically available lexicons,
glossaries, taxonomies, ontologies, and repositories

of facts, created both manually and automatically.
Many are provided in common formats, with links
to one another, or via easily accessible web services.
Over the coming years, the rising popularity of the
Semantic Web and Linked Data will spur further de-
velopments in the linkage and accessibility of existing
knowledge structures, which will support ever more
powerful applications.

There are numerous reasons for constructing
lexicons, taxonomies, ontologies, and other struc-
tures. Some researchers attempt to accurately repre-
sent the entirety of lexical knowledge and knowledge
of language; others focus on constructing a special-
ized resource for navigating a document collection in
a narrow domain; still others set out to collect millions
of facts and assertions with the ultimate aim of build-
ing a comprehensive oracle or question-answering
system.

As automatically constructed knowledge struc-
tures become more accurate, comprehensive, and ex-
pressive, and with recent attempts to learn even com-
mon sense ontological knowledge, we predict the
emergence of ever more powerful systems that con-
nect information residing in a variety of sources into
a single knowledge base that drives a powerful in-
ference engine. At the same time, the information
in many knowledge structures is already available
via web services, which frees it from the shackles
of a single organization and allows it to be curated,
maintained, and updated by its original authors. The
key becomes how to combine all this information
meaningfully. It is interesting to reflect on how much
knowledge about what we know—and more partic-
ularly about what we don’t know—needs to be cap-
tured before we can be confident in being able to sup-
port a robust reasoning process. In a sense, this is a
contemporary version of the classical ‘frame problem’
in Artificial Intelligence, which still remains tantaliz-
ingly out of reach. Is it possible, in principle, to deter-
mine the scope of the knowledge required to derive
the full answer to a question, or the full consequences
of an action?
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